Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Flying insects have a robust flight system that allows them to fly even when their forewings are damaged. The insect must adjust wingbeat kinematics to aerodynamically compensate for the loss of wing area. However, the mechanisms that allow insects with asynchronous flight muscle to adapt to wing damage are not well understood. Here, we investigated the phase and amplitude relationships between thorax deformation and flapping angle in tethered flying bumblebees subject to wing clipping and weighting. We used synchronized laser vibrometry and high-speed videography to measure thorax deformation and flapping angle, respectively. We found that changes in wing inertia did not affect thorax deformation amplitude but did influence wingbeat frequency. Increasing wing inertia increased flapping amplitude and caused a phase lag between thorax deformation and flapping angle, whereas decreasing wing inertia did not affect flapping amplitude and caused the flapping angle to lead thorax deformation. Our findings indicate that bumblebees adapt to wing damage by adjusting their wingbeat frequency rather than altering their wing stroke amplitude. Additionally, our results suggest that bumblebees operate near a wing-hinge-dominated resonant frequency, and that moments generated by steering muscles within the wing hinge influence the phase between thorax deformation and wing stroke nontrivially. These insights can inform the design of resilient, insect-inspired flapping-wing micro air vehicles.more » « less
-
Abstract Several agriculturally valuable plants store their pollen in tube-like poricidal anthers, which release pollen through buzz pollination. In this process, bees rapidly vibrate the anther using their indirect flight muscles. The stiffness and resonant frequency of the anther are crucial for effective pollen release, yet the impact of turgor pressure on these properties is not well understood. Here, we performed three-point flexure tests and experimental modal analysis to determine anther transverse stiffness and resonant frequency, respectively. Dynamic nanoindentation was used to identify the anther storage modulus as a function of excitation frequency. We subsequently developed mathematical models to estimate how turgor pressure changes after the anther is removed from a flower, thereby emulating zero water availability. We found that anther stiffness decreased by 60% at 30 min post-ablation and anther resonant frequency decreased by 20% at 60 min post-ablation. Models indicated that turgor pressure in the fresh anther was ~0.2–0.3 MPa. Our findings suggest that natural fluctuations in turgor pressure due to environmental factors such as temperature and light intensity may require bees to adjust their foraging behaviors. Interestingly, the anther storage modulus increased with excitation frequency, underscoring the need for more sophisticated mechanical models that consider viscous fluid transport through plant tissue.more » « less
-
Insects have developed diverse flight actuation mechanisms, including synchronous and asynchronous musculature. Indirect actuation, used by insects with both synchronous and asynchronous musculature, transforms thorax exoskeletal deformation into wing rotation. Though thorax deformation is often attributed exclusively to muscle tension, the inertial and aerodynamic forces generated by the flapping wings may also contribute. In this study, a tethered flight experiment was used to simultaneously measure thorax deformation and the inertial/aerodynamic forces acting on the thorax generated by the flapping wing. Compared to insects with synchronous musculature, insects with asynchronous muscle deformed their thorax 60% less relative to their thorax diameter and their wings generated 2.8 times greater forces relative to their body weight. In a second experiment, dorsalventral thorax stiffness was measured across species. Accounting for weight and size, the asynchronous thorax was on average 3.8 times stiffer than the synchronous thorax in the dorsalventral direction. Differences in thorax stiffness and forces acting at the wing hinge led us to hypothesize about differing roles of series and parallel elasticity in the thoraxes of insects with synchronous and asynchronous musculature. Specifically, wing hinge elasticity may contribute more to wing motion in insects with asynchronous musculature than in those with synchronous musculature.more » « less
-
Abstract Flapping insect wings collide with vegetation and other obstacles during flight. Repeated collisions may irreversibly damage the insect wing, thereby compromising the insect's ability to fly. Further, reaction torques caused by the collision may destabilize the insect and hinder its ability to maneuver. To mitigate the adverse effects of impact, some insect wings are equipped with a flexible joint called a “costal break.” The costal break buckles once it exceeds a critical angle, which is believed to improve flight stability and prevent irreversible wing damage. However, to our knowledge, there are no models to predict the dynamics of the costal break. Through this research, we develop a simple model of an insect wing with a costal break. The wing was modeled as two beams interconnected by a torsional spring, where the stiffness of the torsional spring instantaneously decreases once it has exceeded a critical angle. We conducted a series of static tests to approximate model parameters. Then, we used numerical simulation to estimate the reaction moments, angular impulse, and peak stresses experienced by the wing during a collision. When evaluated over the duration of an external load, we found that buckling could reduce reaction moments and angular impulse up to 82% and 99%, respectively, compared to a homogeneous wing. This suggests the costal break can enhance flight stability. On the other hand, buckling maximally increased peak stresses two times compared to a homogeneous wing, indicating the costal break does not reduce likelihood of damage under the simplified loading considered.more » « less
-
Abstract Approximately 10% of flowering plant species conceal their pollen within tube-like poricidal anthers. Bees extract pollen from poricidal anthers via floral buzzing, a behavior during which they apply cyclic forces by biting the anther and rapidly contracting their flight muscles. The success of pollen extraction during floral buzzing relies on the direction and magnitude of the forces applied by the bees, yet these forces and forcing directions have not been previously quantified. In this work, we developed an experiment to simultaneously measure the directional forces and thorax kinematics produced by carpenter bees (Xylocopa californica)during defensive buzzing, a behavior regulated by similar physiological mechanisms as floral buzzing. We found that the buzzing frequencies averaged about 130 Hz and were highly variable within individuals. Force amplitudes were on average 170 mN, but at times reached nearly 500 mN. These forces were 30–80 times greater than the weight of the bees tested. The two largest forces occurred within a plane formed by the bees’ flight muscles. Force amplitudes were moderately correlated with thorax displacement, velocity and acceleration amplitudes but only weakly correlated with buzzing frequency. Linear models developed through this work provide a mechanism to estimate forces produced during non-flight behaviors based on thorax kinematic measurements in carpenter bees. Based on the buzzing frequencies, individual bee’s capacity to vary buzz frequency and predominant forcing directions, we hypothesize that carpenter bees leverage vibration amplification to increase the deformation of poricidal anthers, and hence the amount of pollen ejected.more » « less
-
Abstract Flapping insect wings frequently collide with vegetation and other obstacles during flight. Repeated collisions may irreversibly damage the insect wing, thereby compromising the insect’s ability to fly. Further, reaction torques caused by the collision may destabilize the insect and hinder its ability to maneuver. To mitigate the adverse effects of impact, some insect wings are equipped with a flexible joint called a “costal break.” The costal break buckles once it exceeds a critical angle, which is believed to improve flight stability and prevent irreversible wing damage. However, to our knowledge, there are no models to predict the dynamics of the costal break. Through this research, we develop a simple model of an insect wing with a costal break. The wing was modeled as two beams interconnected by a torsional spring, where the stiffness of the torsional spring instantaneously decreases once it has exceeded a critical angle. We conducted a series of static tests to approximate model parameters. Then, we used numerical simulation to estimate the peak stresses and reaction moments experienced by the wing during a collision. We found that costal break increased the wing’s natural frequency by about 50% compared to a homogeneous wing and thus reduced the stress associated with normal flapping. Buckling did not significantly affect peak stresses during collision. Joint buckling reduced the peak reaction moment by about 32%, suggesting that the costal break enhances flight stability.more » « less
An official website of the United States government
